
news

16 communications of the acm | february 2014 | vol. 57 | no. 2

P
h

o
t

o
g

r
a

p
h

 b
y

 K
e

v
i

n
 J

a
r

r
e

t
t

T
o g au g e t h e ability of pro-
fessional graphic designers
to do basic programming,
Brian Dorn, then a graduate
student at the Georgia In-

stitute of Technology (Georgia Tech),
asked a group of them to read and
modify a piece of program code. The
idea was to see whether they could
turn themselves into informal pro-
grammers and figure out how to de-
velop automated functions in Adobe
Photoshop. Unfortunately, when the
designers conducted Web searches to
look for information on the code they
needed, they sometimes used results
that pointed them in the wrong direc-
tion, which was toward Java—when
they actually needed to be using JavaS-
cript for this particular project.

One of the underlying causes could
have been tied to the participants’ “lack
of sufficient general, abstract knowl-
edge of the computing and/or program-
ming structures at play,” wrote Dorn in
Communications in May 2011.

His advisor, Mark Guzdial, who re-
layed the story, said the findings indi-
cate to him “that there are a lot of peo-
ple who need knowledge of computer
science … who are going to use it in their
lives, but because they never learned
anything about computer science, they
are teaching it [to] themselves and cod-
ing inefficiently, and wasting a lot of
time and getting frustrated.”

If someone is going to become a
knowledge worker, or take on any job
“that requires an undergraduate de-
gree,” they should know how to read
a piece of code that is useful to them
and be able to make changes to it, says
Guzdial, a professor and director of
Contextualized Support for Learning
in the School of Interactive Computing
at Georgia Tech.

People ranging from former Presi-
dent Bill Clinton to Facebook creator

Mark Zuckerberg to physicist, cosmolo-
gist, and author Stephen Hawking have
expressed the belief that basic comput-
er programming is an essential skill in
today’s world. “Code has become the
4th literacy. Everyone needs to know
how our digital world works, not just
engineers,” says Mark Surman, execu-
tive director of the Mozilla Foundation,
whose comments are among those of
dozens of luminaries on code.org.

The demand for computer scien-
tists and technical professionals in the
U.S. is projected to grow 34% through
2018, according to the Bureau of Labor
Statistics. Many people already engage
in some level of programming; Guzdial
cites a 2005 Carnegie Mellon Univer-
sity study indicating that in 2012 there
would be 90 million workers in the U.S.,
more than 55 million of whom would
use spreadsheets and databases, which
can be deemed programming. The
study also projected that more than 13

million would describe themselves as
“programmers” in 2012, although only
three million of them would be profes-
sional software developers.

The Carnegie Mellon study also not-
ed that a lot of people were doing pro-
gramming without realizing it, by cre-
ating macros for spreadsheets or doing
database queries using SQL. “So the
argument is, lots of people are going to
do programming,” says Guzdial, “and
the data we have studying how end
user programmers teach themselves
and the types of mistakes they make
suggest if they knew something about
computer science, they might not have
to struggle so much later.”

Many people who avoided taking
science and math courses in college
are now struggling as they try to teach
themselves how to program, he points
out. “How many more would be do-
ing some programming if we helped
them? That is the interesting part.”

Should Everybody
Learn to Code?
Not everyone needs coding skills, but learning how to think
like a programmer can be useful in many disciplines.

Society | doi:10.1145/2557447	 Esther Shein

Second-grade students in Kevin Jarrett’s Elementary ‘STEMLAB’ at Northfield Community
School (New Jersey) participate in the 2013 Hour of Code.

news

february 2014 | vol. 57 | no. 2 | communications of the acm 17

While noting that several of his col-
leagues are successful self-taught pro-
grammers, and that learning to pro-
gram does not necessarily have to be
done at a university, Felker says people
need to know more than memorizing
the technology du jour and, as Wing
said, they need the critical ability to
think things through.

“[I]f you aren’t dreaming of be-
coming a programmer—and there-
fore planning to embark on a lengthy
course of study, whether self-directed
or formal—I can’t endorse learning to
code,” Felker writes. “Yes, it is a cre-
ative endeavor. At its base, it’s problem-
solving, and the rewards for exposing
holes in your thinking and discovering
elegant solutions are awesome.” He
goes on to say he does not believe that
most people who learn to code end up
learning anything that stays with them.

Referencing a comment made by
New York City Mayor Michael Bloom-
berg in 2012 that he would learn to
code, programmer Jeff Atwood, writ-
ing in his blog “Code Horror,” poses
the question, “…can you explain to me
how Michael Bloomberg would be bet-
ter at his day-to-day job of leading the
largest city in the USA if he woke up one
morning as a crack Java coder?” While
agreeing that programming is impor-
tant, Atwood says many other skills are
important, too. “I would no more urge
everyone to learn programming than I
would urge everyone to learn plumb-
ing,” he writes.

The so-called “everyone should
learn to code” movement is wrong for
several reasons, according to Atwood,
including the assumption that more
code in the world is an inherently de-
sirable thing. That assumes code is
the goal; it puts the method before the

What You Should Learn
Everyone should learn computational
thinking, maintains Jeannette Wing,
corporate vice president at Microsoft
Research. Computational thinking
helps people learn how to think ab-
stractly and pull apart a problem into
smaller pieces. One concrete way to
learn aspects of those skills is pro-
gramming, Wing says.

That is not to say everyone needs to
learn a specific programming language
like Python or C++, even though many
people identify programming with
turning out code, Wing says. “First of
all, that is too low-level, and it is also
very narrow an interpretation of what I
believe is more important.”

Instead of teaching everyone to
churn out code, the emphasis should
be on learning problem-solving skills
in computer science, much like the
problem-solving skills one learns in
math and engineering, says Wing,
who is on leave as President’s Profes-
sor of Computer Science at Carnegie
Mellon. Writing a program is an ex-
plicit way of expressing a solution
that a human or machine can carry
out, she says. “The more fundamental
skill and more critical thinking skill
is what comes before you write down
this piece of code, and that is compu-
tational thinking.”

Guzdial agrees. “Should we learn
enough so that you can write a script
to do something that otherwise would
have to be done by hand? I would like
to see that, but I cannot make the argu-
ment that it is an absolutely necessity.”

He adds that ignorance of computer
science puts people at a disadvantage
in today’s world. “Not knowing any-
thing about programming makes it
more difficult to pick it up.”

The Flip Side
The issue is far more black and white
to software engineer Chase Felker, who
wrote an article for Slate magazine en-
titled “Maybe Not Everybody Should
Learn to Code.” Felker writes, “Frankly,
just the idea that you can learn to code
in a year gives me the creeps: I would
be terrified if someone with only a cou-
ple of classes were writing programs
for me, not because he (of course, and
unfortunately, most programmers are
men) has learned anything wrong—
but because of what he doesn’t know.”

Computational
thinking helps people
learn how to think
abstractly and pull
a problem apart into
smaller pieces.

ACM
Member
News
Technology, Always
Changing, Should Be
Easy to Use

The two guiding
principles of
Jeff Johnson’s
35-year career in
human-
computer
interaction

(HCI) have been the constantly
changing nature of technology,
and that technology should be
easy to use.

Johnson, president and
principal consultant for product
usability consultancy UI
Wizards Inc., earned B.A. and
Ph.D. degrees in psychology
and computer science from
Yale and Stanford universities,
respectively. He has worked as
a user-interface designer and
implementer, engineer manager,
usability tester, and researcher
at Xerox, Hewlett-Packard Labs,
and Sun Microsystems, and
recently returned from a stint
as a Visiting Erskine Fellow at
the University of Canterbury,
Christchurch, New Zealand.
These experiences have solidified
Johnson’s commitment to
continually refresh his work to
keep pace with the latest digital
advances. “There never will be a
time when everyone is a digital
native, because the definition
of that term changes as digital
technology progresses,” he says.

Johnson, an ACM
Distinguished Speaker, recently
updated his 2009 HCI book
Designing with the Mind in
Mind with a new section on
peripheral vision and chapters
on decision-making and hand-
eye coordination.

He also has a new corporate
endeavor: Wiser Usability,
a consultancy that helps
companies design senior-
friendly websites. “Older adults
tend to have limited mobility
and transportation, and they
could benefit most from online
shopping and online access to
services,” Johnson says. “No one
who isn’t a hardcore computer-
geek, least of all seniors, wants
to use technology for its own
sake. Digital tools that don’t help
seniors accomplish their goals
with a minimum of learning and
bother are not worth the time
and expense,” he adds.

—Laura DiDio

news

18 communications of the acm | february 2014 | vol. 57 | no. 2

questions why they should. “I am not
sure what we can teach them from a
cognitive perspective.” Although there
have been studies done on children
learning to program in the Scratch
programming language, “in general
what we find is kids that young do
not do the things you naturally would
expect coding to involve,’’ including
loops and conditionals.

He says he is concerned about cog-
nitive development. “What we know
about cognitive development is you
typically develop the ability to do ab-
stract reasoning around the age of 12,”
and programming is a very abstract
activity. Guzdial is unsure whether
young children who program develop
abstract reasoning earlier, or if they
are only able to learn a little bit of pro-
gramming skills.

Overall, though, he says computer
science should be taught in schools
–but starting at age five or six, when
only 12% of high schools in the U.S. of-
fer computer science courses and far
fewer middle and elementary schools,
creating a great divide. Guzdial says,
“They are unlikely to see it again for
a dozen years, so why offer it at five or
six?”

Wing also says that, while age five
may be too early to teach how to code,
students that young can learn some
basic concepts similar to the number
and counting skills children typically
are taught at that age. As they get older,
students should be taught other con-
cepts, like what an algorithm is, ways
to represent data, and different analy-
sis techniques in order to understand
and reason, she says.

Looking Ahead
Just as students are taught reading,
writing, and the fundamentals of math
and the sciences, computer science
may one day become a standard part of
a K–12 school curriculum. If that hap-
pens, there will be significant benefits,
observers say. As the kinds of problems
we will face in the future will continue
to increase in complexity, the systems
being built to deal with that complexity
will require increasingly sophisticated
computational thinking skills, such as
abstraction, decomposition, and com-
position, says Wing.

“If I had a magic wand, we would
have some programming in every sci-
ence, mathematics, and arts class,
maybe even in English classes, too,’’
says Guzdial. “I definitely do not want
to see computer science on the side …
I would have computer science in every
high school available to students as
one of their required science or math-
ematics classes.”	

Further Reading

C. Simard, C. Stephenson, D. Kosaraju
“Addressing Core Equities in K–12
Computer Science Education: Identifying
Barriers And Sharing Strategies,” 2009.
http://anitaborg.org/files/ABI-csta-full-
report.pdf

C. Felker
“Maybe Not Everybody Should Learn
to Code,” 2013. http://www.slate.com/
articles/technology/future_tense/2013/08/
everybody_does_not_need_to_learn_to_
code.html

Martyr2
“Why Everyone Should NOT Learn to Code,”
2013. http://www.coderslexicon.com/why-
everyone-should-not-learn-to-code/

D. Haggard
“Why Everyone Should Learn to Program,”
2011. http://reviewsindepth.com/2011/04/
why-everyone-should-learn-to-program/

P. Norvig
“Teach Yourself Programming in Ten Years,”
2001. http://norvig.com/21-days.html

J. Lave
“Cognition in Practice: Mind, Mathematics,
and Culture in Everyday Life,” 1988,
Cambridge University Press.

J.R. Hayes
“The Complete Problem Solver,” 1989.
Lawrence Erlbaum Associates, Inc.

Esther Shein is a freelance technology and business
writer based in the Boston area.

© 2014 ACM 0001-0782/14/02 $15.00

problem, and assumes adding coders
to the workforce is a net positive.

“The general populace (and its
political leadership) could probably
benefit most of all from a basic under-
standing of how computers, and the
Internet, work,’’ he says. “Being able to
get around on the Internet is becoming
a basic life skill, and we should be wor-
ried about fixing that first and most of
all, before we start jumping all the way
into code.”

Guzdial speculates there may be
pushback from programmers, because
they think not everyone can be taught
what they do. “I am not suggesting ev-
eryone produce thousands and thou-
sands of lines of code. I would love if
everyone could graduate from a uni-
versity writing 10 lines of code that are
useful to them.”

The point of teaching program-
ming in high school would be to give
students some level of literacy relative
to programming, including the ability
to think about things in terms of code,
and to understand what code can do,
Guzdial adds.

The State of Computer Science
in Public Education
That may not, however, occur in
schools. Many in the computer sci-
ence field say the U.S. is severely lag-
ging in making even basic computer
science a priority in K–12 schools.
“While other countries have designed
and implemented national computer
science education programs in order
to better prepare their students for
the increasingly competitive global
economy, the decentralized (state,
district-wide, and even school-based)
educational decision-making process
in the U.S. has severely hampered ef-
forts to standardize our computer
science curriculum and create coher-
ence in student learning,” according
to the 2010 report, “Addressing Core
Equities in K–12 Computer Science
Education.”

Guzdial believes the biggest prob-
lem in teaching computer science in
the U.S. is the lack of teachers who
know the discipline. He estimates
there are about 30,000 high schools in
the country, but only 2,000 Advanced
Placement computer science teachers.

Students as young as five can learn
to program, Guzdial maintains, but he

Students as young
as five can learn
some basic concepts
of programming,
similar to the number
and counting skills
children typically are
taught at that age.

